作者:新知
2018-07-01·阅读时长20分钟
本文需付费阅读
文章共计10330个字,产生0条评论
如您已购买,请登录文/蔡天新
摘自《新知》总第3期-精力秘籍
叙拉古城
公元前287年,阿基米德出生在地中海最大的岛屿——西西里东南港市叙拉古(又译锡拉库萨),这个年份是依据他的死亡年份和寿命推算出来的。12世纪的君士坦丁堡(今伊斯坦布尔)诗人、史学家策策斯(Tzetzes)被认为是学究的完美典范,这位诗人的母亲是格鲁吉亚人,年轻时担任省长秘书,后来以教书和写作为生。他最著名的一部拜占庭重音(教诲)诗集《千千诗集》(又名《史书》)共1万2千多行,引用作家达400多人,包含了许多轶文。其中提到,“智者阿基米德是叙拉古人,著名的机械制造师,终生研究几何学,活到75岁。”
阿基米德原本是有传记的,作者是他的一位叫赫拉克利德(Heraclides)的朋友。赫拉克利德与公元前6世纪的哲学家赫拉克利特(Heracleitus)不是同一个人,也非同处一个时代。还有一位公元前4世纪的天文学家赫拉克利德斯(Heracleides)名字也很相近,后者是柏拉图的学生和学园管理者,率先提出地动说,并认为水星和金星是绕日旋转的。6世纪的数学注释家欧托基奥斯(Eutocius)曾不止一次提到这本传记,可惜后来失传了。阿基米德的生平事迹,如同米利都的泰勒斯一样,散见于古代的各种文献中。
古希腊共有四个主要部落,分别是亚加亚人(迈锡尼人)、爱奥尼亚人、多利安人和伊奥尼亚人。叙拉古住着多利安人,稍北的卡塔尼亚住着爱奥尼亚人;一水之隔的亚平宁半岛最南端住着伊奥尼亚人(泰勒斯被认为是伊奥尼亚学派的创建人),稍北的毕达哥拉斯学园所在地塔兰托则住着迈锡尼人,他们说着不同的方言。多利安人最早出现在荷马史诗《奥德赛》中,他们生活在克里特岛上。追根溯源,多利安人可能来自巴尔干岛北部,后迁移到伯罗奔尼撒半岛、罗德岛、克里特岛和西西里岛东部地区。叙拉古的多利安人多是从科林斯移民来的,那是在伯罗奔尼撒半岛与希腊本土的接壤处。
大约在阿基米德出生前一个世纪,叙拉古人建立起一个帝国,他们向北把势力扩大到意大利南部,向南与迦太基(今北非突尼斯)人进行了三次战争,后者是地中海东岸的腓尼基人建立起来的。但在阿基米德出生前两年,叙拉古帝国突然瓦解。在阿基米德生活的年代,古希腊的鼎盛时期已经过去,经济、文化中心转移到埃及北部的地中海港市亚历山大;与此同时,亚平宁半岛上新兴的罗马帝国,正不断地扩张势力。阿基米德生长在这一新旧交替的时代,而叙拉古城也成为多种势力的角力场所。
阿基米德出身贵族,他的父亲菲迪亚斯是一位天文学家,与早些时候的那位大雕刻家、画家、建筑师同名,却没有亲戚关系,后者曾参与雅典卫城上的巴特农神庙建设。有人因此推断他的爷爷是艺术家,或者至少是艺术爱好者。阿基米德从小受父亲影响,喜欢思考和研究。大约在10岁左右,父亲送他到埃及的亚历山大念书,那是当时西方世界的学术中心,有一座著名的大学和图书馆。学者云集,数学、天文学、医学研究较为发达,阿基米德跟随包括欧几里得门徒在内的专家学习,打下了日后从事科学研究的基础。据说他在亚历山大发明了螺旋泵——一种提水的装置,曾被埃及人广泛使用。
亚历山大
阿基米德在亚历山大求学的经历我们不甚了解,其时赫赫有名的大数学家欧几里得很可能已不在人世,或至少离开教学岗位了。因为欧几里得虽然生卒年和出生地不详,但他的执教应大体在托勒密一世统治时期(约公元前323~前285)。在亚历山大期间,阿基米德至少结交了三位同窗或好友,科农(Conon)、多西修斯(Dositheus)和厄拉托色尼(Eratosthenes)。科农是萨摩斯人,与他的前辈老乡毕达哥拉斯一样,也是一位数学家和天文学家。科农是阿基米德最要好、最信得的朋友,两人的友谊维持了一生,他后来成为托勒密三世的宫廷天文官。科伦在圆锥曲线方面的工作,成为阿波罗尼奥斯(Apollonius)《圆锥曲线论》第四卷的基础。
厄拉托色尼是北非昔兰尼加(今利比亚拜尔盖)人,他比阿基米德小10来岁,却有着“柏拉图第二”的雅号,后来担任亚历山大图书馆馆长,平素非常讲究穿戴,80岁时因为双目失明绝食身亡。厄氏多才多艺,写过10卷本的古代戏剧史,是一位五项全能运动员,他在数学方面创立了筛法,这个方法及其推广如今在数论领域仍十分有用。他测出了地球的周长,与准确的数字只差200公里;还根据大西洋和印度洋的潮涨潮落情况,推断它们是相通的,15世纪的葡萄牙探险家达·伽马依据此理论从水路到达ӿ度。他还利用极圈和回归线划分出地球的五个气候带,沿用至今。
返回故乡叙拉古以后,阿基米德与科农、厄拉托色尼保持通信,他把《抛物线求积》、《论螺线》、《球柱和圆柱体》的论著寄给科农,把《论力学定理和方法》和《群牛问题》的论著寄给厄拉托色尼,通过他们也转达给了亚历山大的同行,而两位朋友也把自己的工作告诉阿基米德。据4世纪的数学家帕波斯(Pappus)所言,著名的阿基米德螺线是科农发现的,现今巴黎20个区便是依此曲线排列,这个图案还出现在2004年雅典奥运会的闭幕式上。可惜,科农本人的著作均已遗失,包括7卷本的《论天文学》和《答色腊西达库斯》,后者讨论了圆锥曲线和圆的交点问题。
科农去世以后,阿基米德又与科农的学生、研究历法和天气预报的犹太人多西修斯通信,他在信中写道,“听说科农已经死了,他是我非常好的朋友,而你与他十分相熟,又是学习几何的学生……因此我写信给你,寄给你一些几何定理,因为我已经习惯写信告诉科农了。”从阿基米德其他著作的前言中,我们得知,多西修斯在给阿基米德的信中,也经常问起一些数学问题,至于具体内容是什么,无人知晓。无论如何,阿基米德的主要学术成果,均是在与这些亚历山大学者的通信中为人所知并保存下来的。
究其原因,古希腊没有学术刊物,出版书籍也非易事,因此许多学者通给朋友们写信,向世人宣布自己的学术成果,附信的内容也成为论著的序言。比阿基米德稍晚的阿波罗尼奥斯也是这样做的,他与欧几里得、阿基米德并称为亚历山大黄金时期的三大数学家。阿波罗尼奥斯年轻时也在亚历山大求学,后来到过小亚细亚米利都北面的帕加马王国,那里有一个大图书馆,规模仅次于亚历山大。他在帕加马认识欧德莫斯(Eudemus)和阿塔罗斯(Attalus),回到亚历山大后,把他的名著《圆锥曲线论》前3卷和后5卷分别寄给欧德莫斯和阿塔罗斯,两人因此在数学史上留名。但此欧德莫斯非数学史家欧德莫斯,后者来自罗德岛,是亚里士多德的学生。
力学之父
阿基米德是叙拉古统治者希罗王的亲戚,和王子格伦是朋友,格伦后来继承了王位。公元前1世纪的罗马建筑师、作家维特鲁威在其10卷本的名著《建筑学》第9卷中,记叙了阿基米德和希罗王一则千古传诵的逸事。随着希罗王的政治威望和权势的日益提高,他决定建造一个华贵的神龛,内装一个纯金的王冠(wreath,其实是环状花冠),以报答神灵的恩泽。金匠如期完成了任务,本应得到奖赏,偏偏这时候有人告状,说他偷去一部分金子,代之以银子。国王甚为愤怒,却又无法判断真假,便请聪明能干的阿基米德来鉴定。
阿基米德在洗澡时发现了浮力的作用,这是我们最早接触到的科学家故事之一
起初,阿基米德也想不出好办法。苦闷之际,他到公共浴室洗澡,当浸入放满水的木桶时,一部分水溢出桶外,他的身体顿觉轻飘,于是豁然开朗。阿基米德领悟到,不同质料的物体,虽然重量相同,但因为体积不同,排出的水量也必不相同。根据这一道理,不仅可以判断王冠是否掺假,还可以知道少去的黄金份量。阿基米德高兴地跳了起来,赤身裸体地用多利安方言高喊“尤里卡!”意思是,“我找到了!”他不仅揭穿了金匠的劣迹,且将其上升到理论高度,得到流体静力学的浮力原理:物体在流体中减轻的重量,等于排去流体的重量。
这个原理记载在阿基米德的著作《论浮体》中,《建筑学》因为这则轶事被数学家们知晓,文艺复兴以后她成为古典时期的建筑名著。另有作者记成是希罗王头上的王冠,如同专家所分析的,这不甚合理,如此轻巧的体积恐不能混入银子,也难以用排水法鉴别真伪。1500年以后,意大利画家达·芬奇依据《建筑学》第3卷中提出的人体比例要求和黄金分割律,绘出了钢笔素描《维特鲁威人》,后来成为艺术史上最著名的素描,《建筑学》也借此进入了绘画史。其实,维特鲁威本姓波利奥,因为与同时代的诗人、演说家兼历史学家同名,故被后世写成维特鲁威。
阿基米德的杠杆原理为人熟知,以至于很多人都重复那句话,给我一个支点,我能撬动地球
在帕波斯的著作《数学汇编》里,记载了阿基米德的另一则轶闻,即杠杆定律的故事。这个定律说的是,如果两个物体与一个支点的距离反比于其重量,则杠杆获得平衡。杠杆定律奠定了力学基础,阿基米德因此发出豪言壮语:“给我一个支点,我能撬动地球。”其实,准确的说法是,“如果另外有一个地球,就可以站在那儿移动这一个。”这是1世纪罗马帝国时代的希腊传记作家普鲁塔克在《马塞勒斯传》里描写的,阿基米德还向希罗王夸下海口:任何重物都可以用一个给定的力来移动。国王听后大为惊讶,要求米德用事实来证明。
于是阿基米德从国王的船队中选了一艘有三根桅杆的货船,那通常需要很多人花大力气才拖得动。阿基米德安装了一组滑轮,独自握着绳子站在远处,轻而易举地将船拉了过来。而依据5世纪的拜占庭哲学家普罗克洛斯(Procrus)的说法,那是希罗王为托勒密王建造的一艘大船,下水时几乎动用了所有的叙拉古人,而阿基米德凭借自己发明的机械装置,使得国王一个人就把它拖动。国王因此对他佩服得五体投地,并当众宣布,“从现在起,阿基米德说的话我们都要相信。”有趣的是,笔者发现,今天通过巴拿马运河或苏伊士运河上的每一艘巨轮,依然依靠轨道上的滑轮车牵引。
数学之神
阿基米德不仅出身高贵,内心也具有贵族气质,他对自己的实用发明并不十分看重,这从他流传下来的著作可以看出,那几乎是清一色的数学问题,而机械方面的发明全仰仗他人的记载,但他对机械学的兴趣还是深深地影响了他的数学思想。《论球与圆柱》可能是他最得意的数学著作,序言是他给多西修斯的一封信。书中给出了5个定义和6个公理,例如:两点之间的所有连线,以直线最短;以相同的平面曲线为边界的曲面中,以平面的面积最小。最著名的公理也叫阿基米德公理,用现代数学语言来描述就是:任给两个正数a和b,必然存在自然数n,使得na>b。从这些定义和公理出发,阿基米德推导出了60个命题。
例如,阿基米德发现并证明了,球面积等于它的大圆面积的4倍,球体积等于以它的大圆为底、半径为高的圆锥体积的4倍。更有甚者,阿基米德得到了:以球的大圆为底、直径为高的圆柱的体积是球体积的2/3倍。实际上,这便是著名的球体积公式
这属于命题34,那也是应他要求刻在墓碑上的著名论断。700年以后,利用3世纪数学家刘徽提出的牟合方盖思想,中国晋朝的数学家祖冲之祖暅父子也得到了同一结果。
又如,命题14说的是,正圆锥体的侧面积等于以底面半径与母线的比例中项为半径的圆的面积。实际上,这就等于圆周率、半径和母线三者的乘积。但在古希腊,毕达哥拉斯学派引发了第一次数学危机,线段的长度是否存在成了问题。虽说2个世纪以后,欧多克斯(Eudoxus)通过引进不可通约概念,将这一危机化解。不过,数学家仍避免线段的长度概念,这就是为何阿基米德选择用矩形的面积来表达。从阿基米德公理出发,他用穷竭法(method of exhaustion)严格地证明了欧几里得《几何原本》中的一条定理,只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小。
所谓穷竭法是公元前5世纪的雅典演说家、政治家安提芬(Antiphon)创立的,他在研究“化圆为方”问题时,提出了使用圆内接正多边形面积“穷竭”圆面积的思想。稍后,欧多克斯加以改进,将其定义为:在一个量中减去比其一半还大的量,不断重复这个过程,可以使剩下的量变得任意小”。阿基米德进一步完善了穷竭法,并将其广泛应用于求解曲面面积和旋转体体积。遗憾的是,用穷竭法计算不同的曲边形面积时,需要采用不同的直边形去逼近,计算过程采用了特殊的技巧,因而不具有一般性,无法推广到一般的曲边梯形。
《圆的测量》是一本内容较薄的著作,只有三个命题,均是有关圆的面积和圆周率的,却同样不可小觑。虽说《几何原本》里讨论了许多圆的性质,却压根没提圆周率的值和圆面积、圆周长的计算公式。阿基米德弥补了这一不足,其中命题1是这样叙述的:圆的面积等于一个以其周长和半径作两个直角边的直角三角形的面积。简单的说就是:圆的面积等于半径乘半周长。这与中国数学古籍《九章算术》里的说法“半周长半径相乘得积步”,或者公元263年刘徽注释的说法“半周乘半径为圆幂”,是等价的。
命题3给出了圆的周长与直径之比(圆周率)的上下界,即
阿基米德用他的穷竭法,分别计算出了内接和外切正96边形的周长。这也是科学史上首次用上,下界来确定一个量的近似值,同时提供了误差估计。值得一提的是,不等式左右两端都是连分数的渐近形式,换句话说,在不超过7或71的所有分数中,它们是最接近于圆周率值的。阿基米德得到的圆周率是3.14,精确到小数点后两位,这是公元前人类所得到了最精确的结果。在此之前,最好的结果是古埃及人的3.1,而古巴比伦人和后来的《九章算术》给出的结果都是3.0。在《论锥形体和球形体》中,阿基米德研究了椭圆的面积以及旋转体的体积,进一步深化了穷竭法,十分接近今天的积分法思想。而在《论螺线》一书中,他研究了螺线与出发点的垂线围成的曲线面积,以及螺线的切线,后者用到了微分学的思想。所谓螺线,是指沿绕一定点均匀旋转的直线作匀速运动的点的轨迹。如同20世纪的美国数学史家E·T·贝尔所言,他(阿基米德)比牛顿和莱布尼兹领先两千多年发明了积分学,在他的一个问题(指螺线)中,领先他们发明了微分学。难怪1世纪的罗马博物学家、《自然史》作者普林尼要赞颂阿基米德是“数学之神”。
发表文章72篇 获得12个推荐 粉丝9690人
Wir muessen wissen, Wir werden wissen.
现在下载APP,注册有红包哦!
三联生活周刊官方APP,你想看的都在这里